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Table I. h o t i o n  of Imidad-l-yl  Anions with Carbonyl 
Compoandr in CB&l, 

starting isolated 
material product R1 R2 Ra yield (W) 

1 4 CPh, Me H 83 (66') 
1 6 CPhS Ph H 79 
1 6 CPh, C H 4 H 2  H 60 

2 9 S02NMep Me H 80 
2 10 SO2NMe2 Ph H 83 
2 11 S02NMe2 (CH2)2CH= H 83 

2 13 S02NMe2 -(CH2)4- 77 
3 14 S02(CH2)2- Ph H 66 

1 7 CPh, (CH2)&02Me H 63 
1 8 CPha 4CI.C& ICl-CeH, 69 (53') 

CMe2 
2 12 S02NMel Ph Ph 82 

SiMe, 

'Yield wing THF reaction solvent. 

since its use is often accompanied by enhanced results 
when compared with those obtained in ethereal s01vents.l~ 
We are aware of only one other example of a metal-halogen 
exchange reaction being performed in dichloromethane." 

The trityl>12 dimethylsulfamoyl,2" and [2-(trimethyl- 
silyl)ethyl]~ulfonyl~~ protecting groups are removable under 
a variety of conditions, so that our procedure represents 
a general method for preparing 4(5)-alkylated NH- 
imidazoles. For example, treatment of the N-trityl- 
imidazoles 5 and 8 with aqueous 60% CF3C02H at ambient 

(14) Yoshida, 2.; Konishi, H.; Miura, Y.; Ogoshi, H. Tetrahedron Lett. 
1977,4319. 

temperature for 1 h yielded the carbinols 15 (84% yield) 
and 16 (83% yield); both were isolated as their trifluoro- 
acetatfi salts. The secondary alcohol 15 was also obtained 

15 LB 
by refluxing the dimethylsulfamoylimidazole 10 overnight 
in 10% sulfuric acid or with an equimolar amount of 
LiAlH4 in THF (98% and 64% yield, respectively). 
(Arylhydroxymethy1)imidazoles related to 15, but with 
substituents in the aryl ring, exhibit antihypertensive and 
antiulcerogenic properties,16 and the tertiary alcohol 16 is 
a good inhibitor of the P-450 enzyme aromatase.16 

Finally, it is noted that the reactivity of the magnesio- 
imidazol-Cy1 anions generated via our procedure can be 
modified by the addition of other metal salts (e.g., ZnC12, 
CuCN), so that reaction with a wide variety of noncarbonyl 
containing electrophiles is also possible." 

(15) Karjalaizn, A. J.; Kurkela, K. 0. A. U.S. Pat. 4443466, 19M 
Chem. Abstr. 1984, 101, 130687~. 

(16) Jones, C. D.; Winter, M. A.; Hirsch, K. S.; Stamm, N.; Taylor, H. 
M.; Holden, H. E.; Davenport, J. D.; Krumkalns, E. V.; Suhr, R. G. J. 
Med. Chem. 1990,33,416. 

(17) Turner, R. M.; Lindell, S. D.; Ley, S. V. Unpublished results. 
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Summary: A highly stereoselective (6.5->201) synthesis 
of aryl 2-deoxy-/3-~-glycosides is described. This method 
involves the Mitsunobu coupling of phenols and 2a-(thi- 
opheny1)- or 2a-(selenophenyl)-a-~-pyranoses 3-6,18, and 
19 followed by Bu3SnH reduction of the PhS- and PhSe- 
groups. 

In continuation of our studies on the synthesis of 01- 
ivomycin A' we required an efficient glycosidation method 
for establishing the 2-deoxy-&~-glycosidic linkage between 
the aglycon, olivin, and the AB disac~haride.~*~ 2- 
Deoxy-&glycosides have been synthesized with good ste- 
reoselectivity via the silver silicate mediated glycosylations 
of alcohols and 2-deoxypyranosyl  bromide^.^ However, 
application of this method to the glycosylation of phenols 

~ ~~~ ~~ ~~~ 

~ (1) (a)Remers, W. A. The Chemistry of Antitumor Antibiotics; Wi- 
ley-Interscience, New York, 1979; Chapter 3. (b) Skarbek, J. D.; Speedie, 
M. K. In Antitumor Compounds of Natural Origin: Chemistry and 
Biochemistry: Asza!os, A., Ed: CRC Press: Boca Raton, FL, 1981; 
Chapter 5. (c) Pettit, G. R. Biosynthetic Products for Cancer Chemo- 
therapy; Plenum Press; New York, 1977; Vol. 1, p 143. 

(2) For a review of synthetic efforts through 1987, see: Franck, R. W.; 
Weinreb, S. M. In Studies in Natural Product Chemistry; Rahman, A. 
U., Ed.; Elsevier: Amsterdam, 1989; pp 173-208. 

(3) (a) Synthesis of olivin: Roush, W. R.; Michaelides, M. R.; Tai, D. 
F.; h u r ,  B. M.; Chong, W. K. M.; Harris, D. J. J. Am. Chem. Soc. 1989, 
111,2984. (b) Synthesis of the AB disaccharide: bush ,  W. R.; Lin, X.-F.; 
Straub, J. A. J. Org. Chem. 1991,56, 1649. 

(4) (a) Binkley, R. W.; Koholic, D. J. J. Org. Chem. 1989,54,3577. (b) 
Binkley, R. W. J. Carbohydr. Chem. 1990,9, 507. 
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HO%& 

A 

olivomycin A 

has led, a t  best, to 3:l mixtures of j3la aryl  glycoside^.^^^^ 
Other successful strategies6 for the synthesis of 6-2-deoxy 

(5) Application of the silver silicate method to bromo sugar i provided 
at best 1:l mixtures of the B and Q glycosides. 

I :l,Ar12-naphthd 

(6) For a summary of methods for the eynthesis of 2-dwxy-8- 
glycosides: Rameeh, S.; Kaila, N.; Grewal, 0.; Franck, R. W. J.  Org. 
Chem. 1990,55,5. 
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Scheme Io 

ArOH 
PhaP, DEAD 

OBn PhSCl or PhSeCl 
BnO 

1, R1 = H, R2=OBn 
2, R1 = OBn, R2 = H 

then THF-H20 
Na2C03 
63.89% 3, R1 = H, R2 = OBn, X = SPh 

4, R1 = H, R2 = OBn, X = SePh 
5, R1 = OBn, R2 = H, X = SPh 
6, R1 = OBn, R2 = H, X = SePh 

Bu3SnH a, 2-naphthol 
OAr * BnO b, phenol 

BnO AIBN, toluene c, 0-cresol 
100°C X 

7, R1 = H, R2 = OBn, X = SPh 
8, R1 = H, R2 = OBn, X = SePh 
9, R, = OBn, R2 = H, X = SPh 
10, R1 = OBn, R2 = H, X = SePh 

11, R1 = H, R2=OBn 
12, R, = OBn, R2 = H 

-a 

Substrate 
3 
3 
3 
4 
4 
4 
5 
6 
6 

Phenol Product a!2kWYb-c 
a 7a 88 : 12 74 

7b 
7c 
8a 
8b 
8c 
9a 

1 Oa 
1 oc 

88 : 12 
90 : 10 
93:7 
87 : 13 
9O:lO 
93:7 
>95 : 5 
>95:5  

70 
73 
71 
71 
73 
82 
80 
85 

Product- 
l l a  94 
l l b  76 
l l c  89 
l l a  94 
l l b  85 
l l c  86 
12a 92 
12a 95 
12c 92 

*Key: (a) all glycoaidation esperimenta were performed in tolune a t  0 O C  as described in text; (b) ratio of flu glycoaides determined by 
M)O-MHz 'H NMR analysis of the crude mixture. Ratioa determined by product isolation were similar, (c) yield of fl-glycoeide isolated by 
chromatography; (d) reductions of 7-10 were performed by using 6 equiv of BuSSnH in toluene at 100 O C  under Ar with catalytic AIBN ae 
initiator. The reductions of 8-10 readily proceeded to completion under these conditions. With PhS-containing glycosides 7 and 9, however, 
it  waa necessary to add additional AIBN (catalytic) every 2 h (four additions of AIBN, total) to achieve complete conversion. 

glycosides rely on neighboring group assistance involving 
C(2a) heteroatom substituents (-Br,7 -SPh,6** -SePh? 
-OAc,1° -NHCHOlobJ1) that are reductively removed 
following the successful glycosylation or on the reduction 
of radical intermediates generated at  the anomeric posi- 
tion.12 Applications of these methods to the synthesis of 
aryl glycosides, however, have met with limited success. 
For example, phenyl 2-deoxy-fl-~glucopyranoside has been 
prepared with 3:l selectivity (56%) via the phenylbis- 
(pheny1thio)sulfonium salt mediated electrophilic func- 
tionalization of tribenzyl D-glucal,6 while 4-cresyl 2- 
deoxy-8-Pgalactopyranoside has been prepared with 16:l 
selectivity via the radical reduction of the corresponding 
ulosonate ester, but in only 18% yield for the two key 

We report herein the synthesis of aryl 2-deoxy-fl-~- 
glycosides via Mitsunobu reactions of Pa-(thiophenyl)- and 
2a-(selenophenyl)-tr-D sugars (Scheme I).lSJ4 The Mit- 

steps.12b 

sunobu reaction has previously been utilized for the syn- 
thesis of aryl glycosides'- and glycosyl esters1* as well 
as glycosides of alcohols.14f However, initial attempts to 
apply this procedure to the glycosidation of 2,6-dideoxy- 
hexose 13sb provided a 21 mixture favoring the fl-glydde. 
Recognizing that 13 is a 2:l mixture of a/@ anomers (in 
C a d ,  we anticipated based on Smith's initial report'4d that 
substrates with a greater a-anomeric preference might give 
better &selectivity in the Mitsunobu reaction, assuming 
that the rates of oxyphosphonium salt generation and 
nucleophilic displacement by the phenol are faster than 
anomerization of the substrate. 2a-(Thiophenyl)- and 
2a-(selenophenyl)-a-~-pyranoses 3-6 easily met the first 
criterion, since the a-anomer is significantly favored in each 
case.l6 The data summarized in Scheme I show that 3-6 
are also excellent substrates for Mitsunobu couplings with 
phenols, each providing the desired /3-Pglycosides with at 
least 6.5:l and up to >201 selectivity. 

(7) (a) Thiem, J.; Gerken, M. J. Carbohydr. Chem. 1982-83,1,229. (b) 
Thiem, J.; Gerbn, M.; Bock, K. Liebigs Ann. Chem. 1983,462. (c) Bock, 
K.; Lundt, I.; Pedemn, C. Corbohydr. Res. 1984,130,125. (d) Thiem, 
J.; Gerken, M. J. Org. Chem. 198S,M), 964. 

(8) (a) Nimlaou, K. C.; Ladduwahetty, T.; Randall, J. L.; Chucholow- 
ski, A. J.  Am. Chem. SOC. 1986,108,2466. (b) Ito, Y.; Ogawa, T. Tetra- 
hedron Lett. 1987, 28, 2723. (c) Preuss, R.; Schmidt, R. R. Synthesis 
1988,694. (d) Ram&, 5.; hanck, R. W. J. Chem. Sa., Chem. Commun. 
1989,960. 

(9) Perez, M.; Beau, J.-M. Tetrahedron Lett. 1989, 30,75. 
(10) (a) Trumbl, M.; Veyrilres, A.; Shag, P. Tetrahedron Lett. 1989, 

SO, 2529. (b) Trumtal, M.; Tavecchia, P.; Veyrilres, A.; Sin@, P. Car- 
bohydr. Res. 1989,191, 29. 

(11) Tavecchie, P.; Trumtal, M.; VeyriBres, A.; Shag, P. Tetrahedron 
Lett. 1989,90,2633. 

(12) (a) Crich, D.; Ritchie, T. J. Chem. SOC., Chem. Commun. 1988, 
1461. (b) Crich, D.; Ritchie, T. J. Carbohydr. Res. 1989, 190, C3. (c) 
W e ,  D.; Yang, D.; Lm, J. J.; Miller, R; Paguaga, E. J. Am. Chem. Soc. 
1988,110,8716. 

(13) Reviews: (a) Mitsunobu, 0. Synthesis 1981,l. (b) Castro, B. R. 
Org. React. l98S,29, 1. 

(14) Previous applicationa of the Mitsunobu reaction in lymide 
Vthesis: (a) Grynkiewicz, G. Corbohydr. Res. 1977, 63, 811. (b) 
Akerfeldt, K.; Garegg, P. J.; Ivenen, T. Acta Chem. Scond. 1979, B33, 
467. (c) Garegg, P. J.; Ivemn, T.; Norberg, T. Carbohydr. Res. 1979,73, 
313. (d) Smith, A. B., 111; Hale, K. J.; Rivero, R. A. Tetrahedron Lett. 
1986,27,5813. (e) Smith, A. B., 111; Rivero, R. A.; Hale, K. J.; Vaccaro, 
H. A. J .  Am. Chem. SOC. 1991,113,2092. (0 Szarek, W. A.; Jarrell, H. 
D.; Jones, J. K. N. Carbohydr. Res. 1977,67, C13. (g) Nicolaou, K. C.; 
Groneberg, R. D. J.  Am. Chem. SOC. 1990,112,4085. 

(16) (a) 2u-(?iophenyl)- and 2u-(wlenophenyl)pynno~~ 8 4  were 
prepared accordmg to known procedurm (ref & and m, A.; Neidle, S.; 
Reeae, C. B. Tetrahedron Lett. 1988,29,2711). The momeric preforenm 
memured by 'H NMR (CDCl, or C a d  are: S (131, a$); 4 (2101); S 
(21Q1); 6 (h2&1). (b) The increassd u-anomeric preferen- of pyranoem 
3-6,18, and 19 compared to the 2-deox yranotle 13 may be the corn 
quence of the "gauche effect:" Wolfs, ~ A C C .  Chem. Res. 1972,6,102. 
Labelle, M.; Morton, H. E.; Guindon, Y.; Springer, J. P. J.  Am. Chem. 
SOC. 1988,110,4533, and references cited therein. 
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Scheme I1 

Communications 

2-naphthol, Ph3P 

toluene, O°C 

BrlO 
H EtO&N=NCQEt 

B z I . 3  

13 

BdO 2 
Ca.1 : I  

14 yNH 15 15 2-naphthol Ag-silicate, - 7 8 O  ca. I : I 

BJ$n BJ$n S u b s t r a t e m  G Q D " 7  
14 2-naphthol no catal st, 23O 
14 2-naphthol BFs -58OC <I :*to BnO- BnO 

PhS 0 PhS Br 15 2-naphthol &-silicate, 23' <I : * l o  
CClS 

Scheme 111 
-OH 

PhsP, DEAD - TBDMSO 

OTs 1)  PhSCI, CC14 

R& TBDMSO 
-20°C 

or -78°C (for 19) 
2) Ag2C03 

THF-H20 

1) Nal, THF 
2) Bu3SnH, AIBN 

1 OOOC 
TBDMSO TBDMSO 0- 

PhS' toluene, 
v v  

20, R1 = OAC, R2 = H 

21, R1= H, R2 = OAC 
(12: 1,  81%) 

(15: 1, 60%) 
The Mitsunobu reactions of 3-6 were preformed in 

toluene (0.2 M) at  0 OC in the presence of molecular sieves 
typically using 1.4 equiv of Ph3P, 1.6 equiv of diethyl 
azodicarboxylate, and 1.2 equiv of the phenol. The reac- 
tions were quenched after 30 min with 1 N NaOH and the 
aryl @-D-glycosides were isolated chromatographically in 
70-85% yield. The reaction of 3 and @-naphthol was ex- 
amined in a variety of solvents: toluene, (88:12,@/a); 

These ratios nicely parallel the anomeric composition 
(500-MHz 'H NMFt analysis) of 3 in similar solvents: c&, 
(83:17). Consequently, it appears that very little anom- 
erization of 3 occurs before the SN2 displacement of the 
oxyphosphonium salt intermediate.16 Alternatively, it 
could be argued that the excellent &selectivity is the result 
of neighboring-group assistance by the thiophenyl or 
selenophenyl substituents?$$ This mechanistic possibility 
does not appear valid for the cases at hand, however, since 
several reactions in which neighboring group assistance 
might have been anticipated if oxonium ions were gener- 
ated (glycosyl imidate couplings using 14;& silver silicate 
mediated glycosidations of 15)4 gave at  best 1:l mixtures 
of @- and wary1 glycosides (Scheme 11). 

The thiophenyl and selenophenyl substituents of 8- 
glycosides 7-10 were removed in high yield by treament 
with Bu3SnH and AIBN in toluene at  100 OC.17 While 
this is a standard procedure for reduction of phenyl sel- 
enides?J' there are many fewer successful examples of 
BusSnH reductions of phenyl s ~ l f i d e s . ' ~ J ~ J ~  The re- 

(16) 2-Deoxy-8-aryl glycosides have been prepared via the S,2 dis- 
placement of 0,O-dimethylphosphorodithioate: Bielaweka, H.; Mi- 
chalska, M. J. Carbohydr. Chem. 1986,5,445. 

(17) (a) Neumann, W. P. Synthesis 1987, 665. (b) Curran, D. P. 
Synthesis 1988,427,489. (c) Ramaiah, M. Tetrahedron 1987,43,3541. 

(18) (a) Gutierrez, C. G.; Stringham, R. A.; Nitasaka, T.; Glasscock, K. 
G. J. Or#. Chem. 1980,4S, 3393. (b) Hart, D. J.; Tsai, Y. M. J. Am. Chem. 
SOC. 1982,104,1430. (c) Schmidt, K.; ONeal, S.; Chan, T. C.; Alexis, C. 
P.; Uribe, J. M.; Loseener, K.; Gutierrez, C. G. Tetrahedron Lett. 1989, 
30, 7301. 

CHZClz (88:12); EhO (86:14); THF (8218); CH&N (8218). 

(90:10, CY/@); CD2C12 (89:ll); THF-dB (9O:lO); CD3CN 

ductions of 7 and 9 were noticeably slower than those of 
8 and 10, and it proved necessary to add AIBN several 
times over the come  of an 8-10 h reaction period in order 
to achieve complete reduction of the PhS-substituted 
glycosides. 

The Mitsunobu glycosidation method also has been 
applied to differentially functionalized glycals 161g and 17. 
Thus, treatment of 16/17 with PhSCl in CCll at  -20 OC 
followed by hydrolysis of the intermediate glycosyl chlo- 
rides using Ag2C03 in aqueous THF gave pyranoses 18/ 19 
in 87% and 80% yields, respectively (Scheme 111). Mit- 
sunobu couplings with @-naphthol then provided P-D- 
glycosides 20/21 with excellent selectivity (12-15:l) and 
in good yield. Treatment of 20/21 with NaI in THF 
followed by Bu3SnH reduction (AIBN, toluene, 100 "C) 
completed the syntheses of the differentially protected aryl 
2,6-dideoxy-@-~-glycosides 22 (78%) and 23 (42%L2O 

In summary, an efficient and highly stereoselective 
method for the synthesis of aryl 2-deoxy-,9-~-glycosides has 
been developed. This procedure seems ideally suited for 
application toward the synthesis of olivomycin and other 
members of the aureolic acid antibiotic family. 
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(19) A Synthesis of 16 wae reported after our synthesis of this com- 
pound waa completed: Crich, D.; Ritchie, T. J. Carbohydr. Res. 1990,197, 
324. 

(20) The NaI substitution of 21 is the low-yielding step (69% yield) 
in this sequence. 


